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Overview
• Identifying novel approaches and representations for predicting vehicle
trajectories that benefit from interpretability.

•Focus: Long-term prediction periods (≥ 1 s).
•Problem: Long-term prediction highly depends on the scenario con-
text. To include context information into predictions, the applied AI
algorithms/architectures unavoidably require to be complex to a certain
extent and therefore are not interpretable. However, complex AI-based
architectures are hard to trust blindly for such high stake desicions.

•Solution: Find appropriate representations, structures and architectures
that enable partial interpretability by still providing good performance.

→Shaping (latent) representations in order to gain interpretability.

Methods
Expert knowledge-asissted predictions[1]
•Train an autoencoder using D to perform the mapping X 7→ z (en-
coder) and z 7→Xrec (decoder).

•The encoder is implemented using state of the art AI to grasp the
context information of a traffic scenario.

•The decoder part is implemented model-based by using expert-
knowledge. Its output is the long-term trajectory prediction.

•Due to the decoder setup, the latent space z holds a specific and inter-
pretable meaning (e. g. acceleration).

•This method is called a Descriptive (Variational) Autoencoder, short
DVAE.

x = v0t + 0.5z1t
2 y = z2

1 + exp(−relu(z2τ ))
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Graph-based scenario representations
•Use graph structures and graph transformations to represent traffic
scenarios.[2]

•Apply novel methods like Graph Neural Networks to predict intentions
and gain interpretability.[3]

Results
•Evaluation of the proposed DVAE shows, that its prediction accuracy
is similar to their non-interpretable counterparts and superior to simple
model-based methods like the Constant Velocity (CV) model.

•The training can be done completely unsupervised.
•The resulting latent space is interpretable, which allows prediction val-
idation by rules in the latent space (’Watch-Dog’).

• Interpretability contributes towards the use of AI in safety critical ap-
plications. Predictions can be evaluated regarding their validity. Physi-
cally impossible or unlikely predictions can be detected and declared as
untrustworthy.
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Possible Approaches to Generate Watch Dog for Validation

Bounds for the latent space parameters based on
physical constraints.
Physical model of the relation between the latent parameters.
Evaluate the predicted trajectory by checking if the
vehicle will stay on the road and avoid collisions.
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Smart Watch Dog

Outlook
In future work, the goal is to introduce more sophisticated motion cal-
culations within the decoder part to improve prediction performance. A
more general decoder design is necessary to enable the networks’ usage
for all traffic situations and not to be limited to highway-alike scenarios.
Current efforts are evaluating the usage of graph structures for the pre-
diction task. First results support this research direction showing that
both interpretabilty and performance can benefit from representations in
graph structures.
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